# **Techniques of dual-Doppler radar wind analysis: a review and new methodologies** [10 June 2010, Geophysical Colloquium, University of Hamburg] by Alan Shapiro School of Meteorology, University of Oklahoma, Norman, Oklahoma, USA



# **The Doppler effect**

Waves (e.g., sound, radio, light) of a given frequency are emitted from a source, strike an object, and are reflected back toward source.

If the object is moving toward the source then the apparent frequency of the reflected wave <u>increases</u> over that of the transmitted wave.

The speed of the object can be estimated from this frequency shift!





# **Use of Doppler frequency shift in speed estimates**

- Astronomy (radiation emitted from planets, stars and galaxies)
- Law enforcement (radio waves from radar guns reflect off cars)
- Medicine (ultrasound waves bounce off blood cells)
- Meteorology (radio waves from radar bounce off hydrometeors)









## **Doppler radar radial velocity component (***v***<sub>r</sub>)**



# **Radar reflectivity factor (***Z***)**

Doppler radars also measure how much energy is reflected back. The radar reflectivity factor Z is a measure of the efficiency of a radar target (e.g. raindrop) in intercepting and returning radio energy.

*Z* varies strongly with drop diameter *D*:

$$Z = \int_{0}^{\infty} N(D) D^6 dD, \qquad (1)$$

where N(D) is the number concentration of the raindrops.

The raindrop terminal velocity  $w_t$  can be estimated from Z by applying standard empirical relations such as  $w_t = aD^b$ ,  $N = N_0 \exp(-\Lambda D)$  in (1).

## **Examples of Doppler radar imagery**

Vertical slice through a cold front



3 May 1999 tornadic supercell (reflectivity from a WSR-88D radar)



#### 10 May 2010 tornadic supercell (reflectivity from OU-PRIME)



#### Doppler-on-Wheels reflectivity in a developing tornado





#### Another high-resolution Doppler-on-Wheels tornado



#### **Dual-Doppler wind and thermodynamic analysis**

Given one velocity component  $v_r$  (and Z) from two Doppler radars, we want to derive u, v, w and maybe p' and  $\rho'$  and maybe even  $q_r$  and  $q_i$ .

**Step 1: Wind analysis**. Combine data from two radars (look at storm from two angles) with mass conservation,  $\nabla \cdot [\rho_0(z)\vec{u}] = 0$  to get u, v, w.



#### **Step 2: Thermodynamic analysis (Gal-Chen 1978)**

Apply u, v, w from step 1 into the horizontal-motion Navier-Stokes equations,

$$\frac{\partial \vec{u}_h}{\partial t} + (\vec{u} \cdot \nabla) \vec{u}_h = -\frac{1}{\rho_0(z)} \nabla_h p' - f \hat{k} \times \vec{u}_h + v \nabla^2 \vec{u}_h.$$
(2)

Taking  $\nabla_h \cdot$  (2) yields a Poisson equation for p',

$$\nabla_h^2 p' = \text{known stuff}.$$
 (3)

Solve (3) for p' using Neumann boundary conditions inferred from (2).

Then, obtain  $\rho'$  from z-component Navier-Stokes equation,

$$\frac{\partial w}{\partial t} + (\vec{u} \cdot \nabla)w = -\frac{1}{\rho_0(z)}\frac{\partial p'}{\partial z} - g\frac{\rho'}{\rho_0(z)} + v\nabla^2 w.$$

#### **Applications of dual-Doppler wind/thermodynamic analysis**

**Mesocyclones** [Brandes 1984; Hane & Ray 1985; Dowell & Bluestein 1997; Wakimoto et al. 1998; Cai & Wakimoto 2001; Weygandt et al. 2002; Wurman et al. 2007]

Dual-Doppler analysis of tornadic supercell thunderstorms showed that

- (i) an intense occlusion downdraft develops prior to tornadogenesis,
- (ii) this downdraft is induced from a low-level vortex-induced vertical perturbation pressure gradient, and

(iii) this downdraft has a warm core.

**Squall lines** [Roux et al. 1984; Roux 1985, 1988; Lin et al. 1986, 1990; Hauser et al. 1988; Jorgensen et al. 1997; Liou et al. 2003]

**Frontal rainbands** [Parsons 1987; Roux et al. 1993]

Microbursts and downbursts (Kessinger et al. 1988; Parsons & Kropfli 1990)

Dual-Doppler analysis of a tornadic supercell (Wurman et al. 2007)



#### **Exact theory for dual-Doppler wind analysis**

Armijo (1969) derived the solution for a 3D velocity field  $\vec{u}$  for which

(i) radial components of  $\vec{u}$  agree with radial wind observations,

$$\vec{u} \cdot \hat{r}_1 = v_{r1},\tag{4}$$

$$\vec{u} \cdot \hat{r}_2 = v_{r2},\tag{5}$$

(ii) anelastic mass conservation equation is satisfied,

$$\nabla \cdot [\rho_0(z)\vec{u}] = 0, \tag{6}$$

(iii) impermeability condition is satisfied (w=0 at ground level).

The u, v, w fields satisfy (4), (5), (6). Eliminating u and v in favor of w yields a 1st order partial differential equation for w. Get the exact analytical solution by integrating a forcing term along characteristics.

## **Coplane coordinate system**

The characteristics in the Armijo theory are circles in a cylindrical coordinate system whose central axis connects the radars (baseline). To get w at any point (A), integrate the forcing term (data) along the circle passing through A. Start at the ground (B) where w = 0.

Well-posedness condition: a unique solution for w exists at A if there are data at all points from A to B. No solution exists if data are missing anywhere between A and B.



# A Cartesian form of dual-Doppler wind analysis

Some investigators bypass Armijo's direct procedure, and solve (4), (5), (6) iteratively in a Cartesian coordinate system [Brandes 1977; Ray et al. 1980; Hildebrand & Mueller 1985; Dowell & Bluestein 1997]



The iterative Cartesian analysis does not always converge. Dowell and Shapiro (2003) derived a stability condition that showed that Armijo's "well-posedness" condition was relevant even in Cartesian coordinates.

Even in cases where the analysis is well posed (either Armijo's Coplane analysis or the iterative Cartesian analysis), dual-Doppler analyses are still subject to a number of practical difficulties.

#### **Ongoing challenges with dual-Doppler wind analysis:** problems and some (partial) solutions

# **Problem 1: Non-simultaneous data collection can result in phase (location) errors in key features such as gust fronts and vortices.**

Solution: Use "advection correction." Invoke the frozen-turbulence hypothesis to shift data from both radars to a common analysis time.



#### **Frozen-turbulence hypothesis**

Frozen-turbulence hypothesis: patterns translate (shift) without change in shape or intensity. In the case of the reflectivity field Z, this implies:

$$\frac{\partial Z}{\partial t} + U \frac{\partial Z}{\partial x} + V \frac{\partial Z}{\partial y} = 0, \qquad (7)$$

where U, V are pattern-translation components (<u>not</u> wind velocity components).

Many methods are available to estimate U, V (e.g., Gal Chen 1982), however these generally treat U and V as constants over the whole grid.

We will consider a procedure to derive/use spatially-variable U, V fields in advection correction.

# **Problem 2: Biases in the divergence can quickly accumulate in the integration process and yield catastrophic errors in** *w*.

Solution: Use radial wind data and mass conservation equation  $\nabla \cdot [\rho_0(z)\vec{u}] = 0$  as weak constraints (least squares error) in a variational procedure, e.g. 3DVAR or 4DVAR.

#### We will look at an example of this later.

**Problem 3: Missing low-level data due to earth curvature, ground clutter, or non-zero elevation angle of lowest sweep.** 



Solution: Extrapolate data from the lowest sweep down to the ground.

Alternatively, use another constraint, e.g. a vorticity equation. We will also look at this later.

#### **Spatially variable advection correction**

We seek U(x, y), V(x, y) and reflectivity Z(x, y, t) fields on horizontal or constant elevation angle surfaces that **minimize the cost function**:

$$J \equiv \iiint \left[ \alpha \left[ \frac{\partial Z}{\partial t} + U \frac{\partial Z}{\partial x} + V \frac{\partial Z}{\partial y} \right]^2 + \beta \left| \nabla_h U \right|^2 + \beta \left| \nabla_h V \right|^2 \right] dx \, dy \, dt \,, \quad (8)$$

with Z imposed at two effective data times, t = 0 and t = T.

 $\beta$  is a smoothness coefficient;  $\alpha$  is a data coverage function (= 0 or 1) that satisfies  $\frac{\partial \alpha}{\partial t} + U \frac{\partial \alpha}{\partial x} + V \frac{\partial \alpha}{\partial y} = 0.$ 

A similar J underpins some single-Doppler velocity retrievals (Laroche & Zawadzki 1995; Liou & Luo 2001) and some precipitation nowcasting algorithms (Germann & Zawadzki 2002).

#### **Euler-Lagrange equations**

Two elliptic equations,

$$\beta T \frac{\partial^2 U}{\partial x^2} + \beta T \frac{\partial^2 U}{\partial y^2} = \int \alpha \frac{\partial Z}{\partial t} \frac{\partial Z}{\partial x} dt + U \int \alpha \left(\frac{\partial Z}{\partial x}\right)^2 dt + V \int \alpha \frac{\partial Z}{\partial x} \frac{\partial Z}{\partial y} dt, \quad (9)$$
$$\beta T \frac{\partial^2 V}{\partial x^2} + \beta T \frac{\partial^2 V}{\partial y^2} = \int \alpha \frac{\partial Z}{\partial t} \frac{\partial Z}{\partial y} dt + U \int \alpha \frac{\partial Z}{\partial x} \frac{\partial Z}{\partial y} dt + V \int \alpha \left(\frac{\partial Z}{\partial y}\right)^2 dt, \quad (10)$$

and one parabolic equation,

$$\alpha \left(\frac{\partial}{\partial t} + U\frac{\partial}{\partial x} + V\frac{\partial}{\partial y}\right)^2 Z + \alpha \left(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y}\right) \left(\frac{\partial Z}{\partial t} + U\frac{\partial Z}{\partial x} + V\frac{\partial Z}{\partial y}\right) + \left(\frac{\partial \alpha}{\partial t} + U\frac{\partial \alpha}{\partial x} + V\frac{\partial \alpha}{\partial y}\right) \left(\frac{\partial Z}{\partial t} + U\frac{\partial Z}{\partial x} + V\frac{\partial Z}{\partial y}\right) = 0.$$
(11)

The characteristics of (11) are solutions of Dx/Dt = U, Dy/Dt = V, which are the equations for trajectories. Can solve (11) analytically.

#### Analysis grid



#### **Combined analytical/numerical solution**

Iterate between these steps:

Step 1: Solve the elliptic equations for U and V by relaxation.

- Step 2: Calculate forward and backward trajectories running through all analysis points at a set of computational times.
- Step 3: Interpolate Z data to the end-points of each trajectory.
- Step 4: Update Z by evaluating the analytical solution of the parabolic equation for Z.

$$Z(t) = Z(t_0) + \left[ Z(t_0 + T) - Z(t_0) \right] \frac{I(t)}{I(t_0 + T)},$$
(12)  
where  $I(t) = \int_{t_0}^{t} \exp \left[ \int_{t_0}^{t'} \left( \frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} \right) dt'' \right] dt'.$ 

#### **Test case: Oklahoma supercell storm, 8 May 2003**

Input data: Two scans of WSR-88D radar reflectivity (KTLX radar)





#### **Quantitative verification using a TDWR radar**

Tests with a second radar (TDWR) gave similar results but were better suited for quantitative verification: data available every ~1 min, so could compare advection-corrected Z with true Z at an intermediate time. RMS error in spatially variable U, V experiment (~ 4.5 dBZ) is less than RMS errors obtained in any constant U, V experiments:



# Use of a mesoscale vertical vorticity equation in dual-Doppler wind analysis

