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The Doppler effect 
Waves (e.g., sound, radio, light) of a given frequency are emitted from 
a source, strike an object, and are reflected back toward source. 
 
If the object is moving toward the source then the apparent frequency 
of the reflected wave increases over that of the transmitted wave. 
 
The speed of the object can be estimated from this frequency shift! 
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Use of Doppler frequency shift in speed estimates 

- Astronomy (radiation emitted from planets, stars and galaxies) 
- Law enforcement (radio waves from radar guns reflect off cars) 
- Medicine (ultrasound waves bounce off blood cells) 
- Meteorology (radio waves from radar bounce off hydrometeors) 
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Doppler radar radial velocity component (vr) 
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Radar reflectivity factor (Z) 
 
Doppler radars also measure how much energy is reflected back. The 
radar reflectivity factor Z is a measure of the efficiency of a radar 
target (e.g. raindrop) in intercepting and returning radio energy. 
  
Z varies strongly with drop diameter D:    
 
 Z = N(D)D6dD

0

∞
∫ ,                              (1) 

 
where N(D) is the number concentration of the raindrops. 
 
The raindrop terminal velocity wt can be estimated from Z by applying 
standard empirical relations such as wt =aDb , N =N0exp(−ΛD) in (1).  
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Examples of Doppler radar imagery 
 
Vertical slice through a cold front 
 
           radial velocity               reflectivity 
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3 May 1999 tornadic supercell (reflectivity from a WSR-88D radar) 
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10 May 2010 tornadic supercell (reflectivity from OU-PRIME) 
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Doppler-on-Wheels reflectivity in a developing tornado 
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Another high-resolution Doppler-on-Wheels tornado 
 
        radial velocity           reflectivity 
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Dual-Doppler wind and thermodynamic analysis 
 
Given one velocity component vr  (and Z) from two Doppler radars, we 
want to derive u, v, w and maybe p' and ρ' and maybe even qr and qi. 
 
Step 1: Wind analysis. Combine data from two radars (look at storm 
from two angles) with mass conservation, 

 
∇⋅[ρ0(z)

u] = 0  to get u, v, w.  

 



 

 13 

Step 2: Thermodynamic analysis (Gal-Chen 1978) 
 
Apply u, v, w from step 1 into the horizontal-motion Navier-Stokes 
equations, 
 
   

 

∂uh
∂t

+ (u ⋅∇)uh = − 1
ρ0(z)

∇h ′p − f k̂× uh + ν∇2uh.           (2) 

 
Taking ∇h ⋅ (2) yields a Poisson equation for p',    
 
   ∇h

2 ′p = known stuff .                (3) 
 
Solve (3) for p' using Neumann boundary conditions inferred from (2).  
 
Then, obtain ρ' from z-component Navier-Stokes equation, 
 
   

 

∂w
∂t

+ (u ⋅∇)w = − 1
ρ0(z)

∂ ′p
∂z

− g ′ρ
ρ0(z)

+ ν∇2w. 
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Applications of dual-Doppler wind/thermodynamic analysis 
 
Mesocyclones [Brandes 1984; Hane & Ray 1985; Dowell & Bluestein 1997; 
Wakimoto et al. 1998; Cai & Wakimoto 2001; Weygandt et al. 2002; Wurman et al. 2007]  
 
Dual-Doppler analysis of tornadic supercell thunderstorms showed that 
  

      (i) an intense occlusion downdraft develops prior to tornadogenesis,  
 

 (ii) this downdraft is induced from a low-level vortex-induced   
  vertical perturbation pressure gradient, and 
 

  (iii) this downdraft has a warm core. 
 
Squall lines [Roux et al. 1984; Roux 1985, 1988; Lin et al. 1986, 1990; Hauser et 
al. 1988; Jorgensen et al. 1997; Liou et al. 2003]  
 
Frontal rainbands [Parsons 1987; Roux et al. 1993] 
 
Microbursts and downbursts (Kessinger et al. 1988; Parsons & Kropfli 1990)  



 

 15 

Dual-Doppler analysis of a tornadic supercell (Wurman et al. 2007) 
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Exact theory for dual-Doppler wind analysis 
 
Armijo (1969) derived the solution for a 3D velocity field 

 

u  for which  
 
 (i)  radial components of  u  agree with radial wind observations, 
 
   

 

u ⋅ r̂1 =vr1,                       (4) 
 

   
 

u ⋅ r̂2 =vr2,                                (5) 
 
 (ii) anelastic mass conservation equation is satisfied, 
 
   

 
∇⋅[ρ0(z)

u] = 0 ,                  (6) 
 
 (iii) impermeability condition is satisfied (w = 0 at ground level). 
 
The u, v, w fields satisfy (4), (5), (6). Eliminating u and v in favor of w 
yields a 1st order partial differential equation for w. Get the exact 
analytical solution by integrating a forcing term along characteristics. 
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Coplane coordinate system 
 
The characteristics in the Armijo theory are circles in a cylindrical 
coordinate system whose central axis connects the radars (baseline). To 
get w at any point (A), integrate the forcing term (data) along the circle 
passing through A. Start at the ground (B) where w = 0.  
 
Well-posedness condition: a unique solution for w exists at A if there 
are data at all points from A to B. No solution exists if data are 
missing anywhere between A and B.   
 
 
 
 
 
 
 
 

baseline 
Radar 1 

Radar 2 

. 

. 

B 

A 
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A Cartesian form of dual-Doppler wind analysis 
 
Some investigators bypass Armijo's direct procedure, and solve (4), (5), 
(6) iteratively in a Cartesian coordinate system [Brandes 1977; Ray et al. 
1980; Hildebrand & Mueller 1985; Dowell & Bluestein 1997] 

 
 

The iterative Cartesian analysis does not always converge. Dowell and 
Shapiro (2003) derived a stability condition that showed that Armijo's 
"well-posedness" condition was relevant even in Cartesian coordinates. 
 
Even in cases where the analysis is well posed (either Armijo's 
Coplane analysis or the iterative Cartesian analysis), dual-Doppler 
analyses are still subject to a number of practical difficulties. 
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Ongoing challenges with dual-Doppler wind analysis: 
problems and some (partial) solutions 

 
Problem 1: Non-simultaneous data collection can result in phase 
(location) errors in key features such as gust fronts and vortices. 
 
Solution: Use "advection correction." Invoke the frozen-turbulence 
hypothesis to shift data from both radars to a common analysis time.  
 

  t = 0 min            t = 5 min 
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Frozen-turbulence hypothesis 

Frozen-turbulence hypothesis:  patterns translate (shift) without change 
in shape or intensity.  In the case of the reflectivity field Z, this implies: 
  
 ∂Z

∂t
+U ∂Z

∂x
+V ∂Z

∂y
= 0 ,                   (7) 

 
where U, V are pattern-translation components (not wind velocity 
components).   
 
Many methods are available to estimate U, V (e.g., Gal Chen 1982), 
however these generally treat U and V as constants over the whole grid. 
 
We will consider a procedure to derive/use spatially-variable U, V 
fields in advection correction. 
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Problem 2: Biases in the divergence can quickly accumulate in the 
integration process and yield catastrophic errors in w. 
 
Solution: Use radial wind data and mass conservation equation 
 
∇⋅[ρ0(z)

u] = 0  as weak constraints (least squares error) in a variational 
procedure, e.g. 3DVAR or 4DVAR. 
 
We will look at an example of this later. 
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Problem 3: Missing low-level data due to earth curvature, ground 
clutter, or non-zero elevation angle of lowest sweep. 
 
 

θ = 0°

θ = 15°

 
 
 
Solution: Extrapolate data from the lowest sweep down to the ground.  
 
Alternatively, use another constraint, e.g. a vorticity equation. We will 
also look at this later. 
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Spatially variable advection correction 
 
We seek U(x, y), V(x, y) and reflectivity Z(x, y, t) fields on horizontal or 
constant elevation angle surfaces that minimize the cost function: 

 

     J ≡ ∫∫∫ α ∂Z
∂t

+U∂Z
∂x

+V ∂Z
∂y

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
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2
+ β ∇hU

2 + β ∇hV
2

⎡

⎣

⎢
⎢
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⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

dxdydt ,    (8) 

  
with Z imposed at two effective data times, t = 0 and t = T.   
 
β is a smoothness coefficient; α is a data coverage function (= 0 or 1) 
that satisfies ∂α

∂t
+U∂α

∂x
+V ∂α

∂y
= 0. 

 
A similar J underpins some single-Doppler velocity retrievals (Laroche 
& Zawadzki 1995; Liou & Luo 2001) and some precipitation 
nowcasting algorithms (Germann & Zawadzki 2002). 
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Euler-Lagrange equations 
 
Two elliptic equations, 
 

βT ∂
2U
∂x2

+ βT ∂
2U
∂y2

= ∫α ∂Z
∂t

∂Z
∂x

dt + U ∫α ∂Z
∂x

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2
dt + V ∫α ∂Z

∂x
∂Z
∂y
dt ,     (9) 

βT ∂
2V
∂x2

+ βT ∂
2V
∂y2

= ∫α ∂Z
∂t

∂Z
∂y

dt + U ∫α ∂Z
∂x

∂Z
∂y
dt + V ∫α ∂Z

∂y
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

2
dt ,    (10) 

 

and one parabolic equation, 
 

α ∂
∂t

+U ∂
∂x

+V ∂
∂y

⎛
⎝⎜

⎞
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2
Z +α ∂U
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     + ∂α
∂t

+U ∂α
∂x

+V ∂α
∂y

⎛
⎝⎜

⎞
⎠⎟

∂Z
∂t

+U ∂Z
∂x

+V ∂Z
∂y

⎛
⎝⎜

⎞
⎠⎟
= 0.         (11) 

 

The characteristics of (11) are solutions of Dx/Dt = U, Dy/Dt = V, 
which are the equations for trajectories. Can solve (11) analytically.  
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Analysis grid 
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Combined analytical/numerical solution 
 
Iterate between these steps: 
 
Step 1: Solve the elliptic equations for U and V by relaxation.  
 
Step 2: Calculate forward and backward trajectories running through all 
  analysis points at a set of computational times.  
 
Step 3: Interpolate Z data to the end-points of each trajectory. 
 
Step 4: Update Z by evaluating the analytical solution of the parabolic  
  equation for Z. 
 

  Z(t) = Z(t
0
) + Z(t0+T ) − Z(t0)⎡⎣ ⎤⎦

I(t)
I(t0+T )

,          (12) 

  where  I(t) ≡ exp ∂U/∂x + ∂V/∂y( )d ′′t
t0

′t
∫

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥t0

t
∫ d ′t . 
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Test case: Oklahoma supercell storm, 8 May 2003  
 
Input data: Two scans of WSR-88D radar reflectivity (KTLX radar) 
 
 

  t = 0 min            t = 5 min 
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V (m/s) 

U (m/s) 
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Quantitative verification using a TDWR radar 
Tests with a second radar (TDWR) gave similar results but were better 
suited for quantitative verification: data available every ~1 min, so 
could compare advection-corrected Z with true Z at an intermediate 
time. RMS error in spatially variable U, V experiment (~ 4.5 dBZ) 
is less than RMS errors obtained in any constant U, V experiments: 
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Use of a mesoscale vertical vorticity 
equation in dual-Doppler wind analysis

 
 

 


