Anelastic vertical vorticity equation

Taking $\hat{k} \cdot(\nabla \times$ the anelastic equations of motion yields the anelasic vertical vorticity equation:
$\left(\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z}\right)\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=\frac{\partial u \frac{\partial w}{\partial z}-\frac{\partial v}{\partial y} \frac{\partial w}{\partial x}-\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right), ~(1)}{}$
No baroclinic term in here (no p or ρ). Baroclinicity is very important in convective storms, but the baroclinic vector is mostly horizontal.

This equation relates w to horizontal wind components u, v. Can be used as a constraint in dual-Doppler wind analysis.

3DVAR analysis with vorticity equation constraint

Seek u, v, w that minimize the sum of errors in the analysis constraints:

$$
\begin{aligned}
J \equiv & \equiv \iiint \\
& \int\left(\alpha_{1} O_{1}^{2}+\alpha_{2} O_{2}^{2}\right) d r d \theta d \phi d t+ \\
& \iiint\left(\delta \varepsilon_{m}^{2}+\gamma \varepsilon_{v}^{2}+\beta_{1} S_{1}+\beta_{2} S_{2}+\beta_{3} S_{3}+\beta_{4} S_{4}\right) d x d y d z
\end{aligned}
$$

O_{1}, O_{2} : Differences between analyzed and observed v_{r} data.
$\varepsilon_{m}: \quad$ Residual in mass conservation equation.
$\varepsilon_{v}: \quad$ Residual in anelastic vertical vorticity equation.
$S_{1}-S_{4}: \quad$ Squared spatial derivatives of u, v, w (smoothness terms).
$\beta_{1}-\beta_{4}$: Smoothness weights.
J is minimized with a conjugate-gradient algorithm.

Radar locations

Data denial experiments

Control Run ("truth")

No vorticity equation constraint imposed but all other constraints are turned on.

Data Denial Experiment 1: NOVORT

Radial wind data thrown out for $z<1 \mathrm{~km}$. Otherwise, experiment is same as control run (no vorticity equation constraint).

Data Denial Experiment 2: VORT
Radial wind data thrown out for $z<1 \mathrm{~km}$. The vorticity equation constraint is turned on.

"True" wind field at $z=0.75 \mathrm{~km}$ AGL

"True" $w(\mathrm{~m} / \mathrm{s})$ at $z=1.75 \mathrm{~km}$ AGL

Impact of vorticity constraint:
 $w(\mathrm{~m} / \mathrm{s})$ at $z=1.75 \mathrm{~km}$ AGL

