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Goal of dual-Doppler wind analysis 
 
Synthesize 3D fields of u, v, w in small- and meso-scale phenomena 
from volume scans of radial wind data from two Doppler radars. 
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Main ingredients of dual-Doppler wind analysis 
 
Many different analysis frameworks (Cartesian vs co-plane, direct vs 
iterative, strong vs weak constraints), but most have same ingredients: 
 
 
1.  Radial wind observations vr from two radars, 

2.  Smoothness constraint (explicit or pre/post processing filter), 

3.  Mass conservation (e.g., 
 
∇⋅[ρ(z) u] = 0), 

4.  Impermeability condition (w = 0 at ground level and/or storm top). 
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An exact theory for dual-Doppler wind analysis 
 
Armijo (1969) derived the solution for a 3D velocity field 

 

u  for which  
 
 (i)  radial components of  u  agree with radial wind observations, 
 
   

 

u ⋅ r̂1 =vr1,                       (4) 
 

   
 

u ⋅ r̂2 =vr2,                                (5) 
 
 (ii) anelastic mass conservation equation is satisfied, 
 
   

 
∇⋅[ρ(z) u] = 0 ,                        (6) 

 
 (iii) impermeability condition is satisfied (w = 0 at ground level). 
 
The u, v, w fields satisfy (4)–(6). Eliminating u and v in favor of w 
yields a 1st order partial differential equation for w. Get the exact 
analytical solution by integrating a forcing term along characteristics. 
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Coplane coordinate system 
 
The characteristics in the Armijo theory are circles in a cylindrical 
coordinate system whose central axis connects the radars (baseline). To 
get w at any point (e.g., A), integrate the forcing term (data) along the 
circle passing through A. Start at the ground (B) where w = 0.  
 
Well-posedness condition: a unique solution for w exists at A if there 
are data at all points from A to B. No solution exists if data are 
missing between A and B.   
 
 
 
 
 
 
 
 

baseline 
Radar 1 

Radar 2 

. 

. 

B 
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A Cartesian form of dual-Doppler wind analysis 
 
Can bypass Armijo procedure, and solve (4)–(6) iteratively in Cartesian 
coordinates (e.g., Brandes 1977; Ray et al. 1980; Hildebrand & Mueller 
1985; Dowell & Bluestein 1997). 
 

 
 

However, the iterative procedure does not always converge. Dowell & 
Shapiro (2003) derived a stability condition that showed that Armijo's 
"well-posedness" condition was relevant even in Cartesian coordinates. 
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Ongoing challenges with dual-Doppler wind analysis: 
problems and some (partial) solutions 

 
Even in cases where the analysis is well posed (either Armijo's Coplane 
analysis or the iterative Cartesian analysis), dual-Doppler analyses are 
still subject to a number of practical difficulties. 
 
Problem 1: Biases in the divergence can quickly accumulate in the 
integration process and yield catastrophic errors in w. 
 
Solution: Use radial wind data and mass conservation equation 
 
∇⋅[ρ0(z)

u] = 0  as weak constraints (least squares error) in a variational 
procedure, e.g. 3DVAR or 4DVAR. 
 
We will look at a 3DVAR procedure later. 
 
 



 

 8 

Problem 2: Non-simultaneous data collection can result in phase 
(location) errors in key features such as gust fronts and vortices. 
 
Solution: Use "advection correction." Invoke the frozen-turbulence 
hypothesis to shift data from both radars to a common analysis time.  
 

  t = 0 min            t = 5 min 
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Frozen-turbulence hypothesis 

Frozen-turbulence hypothesis:  patterns translate (shift) without change 
in shape or intensity.  In the case of the reflectivity field Z, this implies: 
  
 DZ

Dt
= 0 ,    or ∂Z

∂t
+U ∂Z

∂x
+V ∂Z

∂y
= 0 ,                   (7) 

 
where U, V are pattern-translation components (not wind velocity 
components).   
 
Many methods are available to estimate U, V (e.g., Gal Chen 1982), 
however these generally treat U and V as constants over the whole grid. 
 
We will consider a procedure to derive/use spatially variable U, V 
fields in advection correction. 
 



 

 10 

Problem 3: Missing low-level data due to earth curvature, ground 
clutter, or non-zero elevation angle of lowest sweep. 
 

θ = 0°

θ = 15°

 
 
 
Solution: Extrapolate data from the lowest sweep down to the ground.  
 
Alternatively, use an additional constraint, e.g. a vorticity equation.  
 
We will also look at this later. 
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Spatially variable advection correction 
 
We seek U(x, y), V(x, y) and reflectivity Z(x, y, t) fields on horizontal or 
constant elevation angle surfaces that minimize the cost function: 

 

     J ≡ ∫∫∫ α ∂Z
∂t

+U∂Z
∂x

+V ∂Z
∂y

















2
+ β ∇hU

2
+ β ∇hV

2






















dxdydt ,    (8) 

  
with Z imposed at two effective data times, t = 0 and t = T.   
 
β is a smoothness coefficient; α is a data coverage function (= 0 or 1) 
that satisfies ∂α

∂t
+U∂α

∂x
+V ∂α

∂y
= 0. 

 
A similar J underpins some single-Doppler velocity retrievals (Laroche 
& Zawadzki 1995; Liou & Luo 2001) and some precipitation 
nowcasting algorithms (Germann & Zawadzki 2002). 
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Euler-Lagrange equations 
 
Two elliptic equations, 
 

βT ∂
2U
∂x2

+ βT ∂
2U
∂y2

= ∫α ∂Z
∂t
∂Z
∂x

dt + U ∫α ∂Z
∂x















2
dt + V ∫α ∂Z

∂x
∂Z
∂y
dt ,     (9) 

 

βT ∂
2V
∂x2

+ βT ∂
2V
∂y2

= ∫α ∂Z
∂t
∂Z
∂y

dt + U ∫α ∂Z
∂x
∂Z
∂y
dt + V ∫α ∂Z

∂y
















2
dt ,    (10) 

 
and one parabolic equation, 
 

α
∂
∂t
+U ∂

∂x
+V ∂

∂y







2
Z +α

∂U
∂x

+
∂V
∂y







∂Z
∂t

+U ∂Z
∂x

+V ∂Z
∂y







 

     + ∂α
∂t

+U ∂α
∂x

+V ∂α
∂y







∂Z
∂t

+U ∂Z
∂x

+V ∂Z
∂y







= 0.         (11) 
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Analytical solution of the equation for Z 
 
The characteristics of (11) are solutions of the trajectory equations: 
Dx/Dt = U, Dy/Dt = V.  In characteristic coordinates, (11) becomes:   
 
 D2R

Dt2 +
∂U
∂x

+∂V
∂y

















DR
Dt =0.                               (12) 

 
Integrate (13) twice with respect to time along trajectories. Evaluate 
constants of integration using data at the two input times. Solution is: 
 

R(t)=R(t1)+ R(t2)−R(t1)





I(t)
I(t2)

,                                  (13) 

 
where      
 
 I(t)≡ expt1

t
∫ − ∂U

∂x
+∂V
∂y
















( ′′t )d ′′tt1

′t
∫
















d ′t .               (14)  
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Analysis grid 
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Combined analytical/numerical solution 
 
 

Step 0:  Construct CAPPIs at two data input times (2 volume scans) 
 
 

Then, iterate between these steps: 
 

 
Step 1:  Solve the elliptic equations for U and V by relaxation.  
 
Step 2:  Calculate forward and backward trajectories running through  
   all analysis points at all computational times.  
 
Step 3:  Interpolate Z data to the end-points of each trajectory. 
 
Step 4:  Evaluate analytical solution for Z. 
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Advection of reflectivity blobs in a solid body vortex 
 

            Z at first input                                    Z at second input 
       time (t = 0 min)             time (t = 6 min) 
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              ⇑  
         Advection-corrected Z at middle time (t = 3 min) 
 
Advection-corrected Z is from a β=100dBZ2  experiment. 
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Retrieved U in solid body vortex experiment 
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Test case: Oklahoma supercell storm, 8 May 2003  
 
Input data:  Two scans of WSR-88D radar reflectivity (KTLX radar) 
 
 

  t = 0 min              t = 5 min 
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V (m/s) 

U (m/s) 
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Tests using 8 May 2003 TDWR data  
Results with TDWR data were similar to those with WSR-88D data, 
but since TDWR data were available every ~1 min, could compare 
retrieved Z with true Z.  RMS error in Z (~ 4.5 dBZ) was less than 
RMS errors in Z obtained in any constant U, V experiment: 
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Use of the anelastic vertical vorticity equation in  
dual-Doppler wind analysis

Taking k̂ ⋅ (∇ ×  anelastic equations of motion) yields an equation for 
the evolution of the vertical vorticity (ζ =∂v/∂x−∂u/∂y): 
 
 ∂

∂t + u
∂
∂x + v

∂
∂y + w

∂
∂z
















ζ = ∂u

∂z
∂w
∂y

− ∂v
∂z
∂w
∂x

− ζ ∂u
∂x+

∂v
∂y
















           (15) 

 
No baroclinic term in here (no p or ρ).  Baroclinicity is very important 
in convective storms, but the baroclinic vector is mostly horizontal.   
 
Since (15) relates w to u and v, it can be used as a constraint in 
dual-Doppler wind analysis (Protat & Zawadzki 2000; Protat et al. 
2001; Mewes & Shapiro 2002; Liu et al. 2005; Shapiro et al. 2009). 
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Contending with unsteady term in vorticity equation 
 
Method 0.  Ignore the term 
 

 ∂
∂t

∂v
∂x−

∂u
∂y
















= 0  

 
Method 1.  Impose frozen turbulence constraint 
 

Impose frozen-turbulence constraint (say, with spatially variable U, V): 
 
 ∂

∂t
∂v
∂x−

∂u
∂y
















= −U ∂

∂x
∂v
∂x−

∂u
∂y
















−V ∂

∂y
∂v
∂x−

∂u
∂y
















.         (16) 

 
Method 2.  Impose frozen turbulence with intrinsic evolution 
 

As air parcels translate, let their vorticity change linearly with time. 
Requires estimates of the vorticity fields at two time levels –  get these 
fields from a simplified dual-Doppler analysis without w. 
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3DVAR analysis with vorticity equation constraint 

Seek u, v, w that minimize the sum of errors in the analysis constraints: 
 

J ≡ ∫ ∫ ∫ ∫ α1O1
2 +α2O2

2














dr dθ dφ dt +

∫ ∫ ∫ δ εm
2 + γ εv

2 + β1S1+ β2S2+ β3S3+ β4S4















dx dy dz.

       (17) 

 
O1, O2:   Differences between analyzed and observed vr data. 

€ 

εm:     Residual in mass conservation equation. 

€ 

εv:    Residual in anelastic vertical vorticity equation.  
S1 – S4:   Squared spatial derivatives of u, v, w (smoothness terms). 
β1 – β4:   Smoothness weights. 
  

J is minimized with a conjugate-gradient algorithm. 
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Test case: Oklahoma supercell storm, 8 May 2003  
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Data denial experiments 
 
Control Run ("truth") 
 
 No vorticity equation constraint but all other constraints turned on.  
 Radial wind data used throughout the analysis domain (as far down 
 to the ground as possible; generally down to 100 - 200 m AGL)   
 
Data Denial Experiment 1:  NOVORT 
 
 Radial winds thrown out for z < 1 km.  Otherwise, experiment  is 
 same as control run (no vorticity equation constraint). 
 
Data Denial Experiment 2:  VORT 
 

Radial winds thrown out for z < 1 km.  The vorticity equation 
constraint is turned on but with no provision for evolution. 
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"True" w (m/s) at z = 1.75 km AGL 
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Impact of vorticity constraint:   
w (m/s) at z = 1.75 km AGL 

 
 
 

             "True" w            w NOVORT       w VORT 
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RMS error in w versus height 
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Tests using Advanced Regional Prediction System 
(ARPS) supercell storm data 
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Data denial experiments 
 
Control Run ("truth") 
 

 w field output from ARPS run  
 
Data Denial Experiment 1:  NOVORT 
 

Radial winds thrown out for z<1.5 km. Data, mass conservation and 
smoothness constraints imposed. No vorticity equation constraint. 

 
Data Denial Experiment 2:  VORT 
 

Radial winds thrown out for z < 1.5 km.  As in NOVORT but now 
the vorticity equation constraint is imposed. Spatially variable 
frozen turbulence applied in unsteady term but with no evolution. 

 
Data Denial Experiment 3:  VORT+ 
 

Radial winds thrown out for z < 1.5 km.  As in VORT but now 
evolution is accounted for (crudely) in unsteady term. 



 

 

 

32 

                 "True" w                                  w NOVORT  

 
     w VORT (2 min scan time)     w VORT+  (2 min scan time) 
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                 "True" w                               w NOVORT   

 
    w VORT (2 min scan time)     w VORT+  (2 min scan time) 
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           5 min volume scans 
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2 min volume scans 
 

    



 

 

 

36 

1 min volume scans 
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30 sec volume scans 
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Focus on VORT+ results 
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Future work 
    
1.  Advection Correction 
 
Derive a spatially variable advection-correction procedure based on 
radial wind data, i.e., based on Euler-Lagrange equations arising from 
minimization of D2(rvr)/Dt2=0 subject to smoothness constraints. 
 
2.  Dual-Doppler wind analysis 
 
Improve estimates of vorticity tendency by using improved spatially 
variable U, V fields (see above). 
 
Improve estimates of vorticity tendency by using rapid scan radar data 
(volume scans ~ 1 min or less), e.g. from PAR radar, CASA radars, 
SMART-R radars, DOW radars. 


	AlanEOLPresentation pt1.pdf
	AlanEOLPresentation pt2

