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Horizontal natural convection 
 

Suppose an underlying surface is differentially cooled or, equivalently, an 
overlying surface is differentially warmed.  
 

 
 
In either case, buoyancy acts in a direction perpendicular to the 
expected principal motion. Buoyancy drives the flow only indirectly – 
through the pressure field, which responds hydrostatically to buoyancy. 
 
Such situations arise in engineering problems (e.g., cooling of electronic 
circuitry) and in meteorology (e.g., land and sea breezes, density currents). 



The land breeze 
 

 
 

[From Pidwirny, M. (2006) "Local and Regional Wind Systems"] 
 
After sunset, the land and sea begin to cool. But the land cools faster than 
the sea, and a lateral temperature contrast develops. The hydrostatic 
pressure field associated with this contrast drives a flow toward the sea. 



Sea breeze 
 
The opposite situation develops after sunrise and leads to a sea breeze.  

 

 
 

[Photo by Ralph Turncote] 
 

Horizontal natural convection is characterized by a shallow boundary layer flow. 



Problem description 
 
Fluid at rest fills the half space above an infinite horizontal plate at z = 0. 
 
At t = 0 a surface cooling is imposed: a steady temperature or heat flux 
that varies as a piecewise constant function of x with step change at x = 0. 
 
Diffusion of heat from surface creates a lateral pressure gradient force that 
drives a shallow boundary-layer-like flow. 
 

 



Boundary-layer equations (Boussinesq form) 
 

Lateral (x) equation of motion:  ∂u
∂t

+ u ∂u
∂x

+ w ∂u
∂z

= − ∂π
∂x

+ν ∂2u
∂z2

,     (1) 

Hydrostatic equation:       0 = − ∂π
∂z

+ b ,                  (2) 

Thermal energy equation:     ∂b
∂t

+ u ∂b
∂x

+ w ∂b
∂z

= −γw +κ ∂2b
∂z2

,    (3) 

Incompressibility condition:   ∂u
∂x

+ ∂w
∂z

= 0.              (4) 

 
u and w:      lateral (x) and vertical (z) velocity components 
π ≡ (p − p)/ρr :  normalized deviation of pressure p from environmental p 
b ≡ g(θ −θ )/θr : buoyancy, with θ = temperature or potential temperature 
θ (z) and p(z):   environmental profiles of θ and p 
γ ≡ (g/θr)dθ /dz: stratification parameter (constant)  
ν andκ :      viscosity and thermal diffusivity (constant) 



Vorticity equation 
 
Taking ∂/∂z  (1) – ∂/∂x (2) and using (4) yields the vorticity equation: 
 

  ∂
∂t

+ u ∂
∂x

+ w ∂
∂z

⎛
⎝⎜

⎞
⎠⎟
∂u
∂z

= − ∂b
∂x

+ν ∂ 3u
∂z3

,                   (5) 

 
where ∂u/∂z  is the y-component vorticity (boundary-layer approximated) 
and −∂b/∂x  is the baroclinic generation term.  
 
To obtain a surface condition for vorticity, integrate (2) from z = 0 to ∞:   
 

  π (x,0) = − b(x, z)dz
0

∞
∫ .                                (6) 

 
Then use (6) to evaluate (1) at the surface, obtaining 
 

  ν ∂2u
∂z2

x, 0( ) = − ∂
∂x

b(x, z)dz
0

∞
∫ .                      (7) 



Nondimensionalization 
 
Buoyancy scale bs  based on surface buoyancy or buoyancy flux:  
 

  bs ≡ max
x∈(−∞,∞)

b(x,0) ,    or   bs ≡ max
x∈(−∞,∞)

κ1/2 db/dz(x,0)[ ]3/4 .         (8) 
 

Introduce ψ  [u = ∂ψ /∂z , w = −∂ψ /∂x] and the nondimensional variables 
 

 (X,Z ) ≡ bs
1/3

ν2/3
(x, z), T ≡ bs

2/3t
ν1/3

, B ≡ b
bs
, Ψ ≡ ψ

ν
, Γ ≡ γν2/3

bs
4/3 , Pr ≡

ν
κ

.  (9) 

 

Equations (3) and (5) become the partial differential equations (PDEs) 
 

  ∂
∂T

+ ∂Ψ
∂Z

∂
∂X

− ∂Ψ
∂X

∂
∂Z

⎛
⎝⎜

⎞
⎠⎟ B = Γ ∂Ψ

∂X
+ 1
Pr

∂2B
∂Z2

,                 (10) 

  ∂
∂T

+ ∂Ψ
∂Z

∂
∂X

− ∂Ψ
∂X

∂
∂Z

⎛
⎝⎜

⎞
⎠⎟
∂2Ψ
∂Z2

= − ∂B
∂X

+ ∂ 4Ψ
∂Z 4

.               (11) 
 

3 governing parameters:  Γ , Pr and ε  (step change in surface forcing)  



Group analysis of unstratified case 
 

Consider the one-parameter (µ) family of stretching transformations 
 
  ′T = µT , ′X = µmX, ′Z = µqZ, ′Ψ = µrΨ, ′B = µsB ,        (12) 
 
The PDEs (10) and (11) (with Γ = 0) are invariant to (12) provided the 
exponents in (12) satisfy  q = 1/2 ,  m = r +1/2,  s = 2r − 3/2,  r = arbitrary. 
 
Seek solutions B=g(X, Z,T ), Ψ= f (X, Z,T ) that themselves are invariant 
to (12). By definition, such solutions satisfy ′B [= µsB =µsg(X, Z,T )] =  
g( ′X , ′Z , ′T ) and ′Ψ [= µrΨ =  µr f (X, Z,T )] = f ( ′X , ′Z , ′T ), that is 
 
  µ2r−3/2g(X, Z,T ) = g(µr+1/2X, µ1/2Z, µT ),                  (13) 
 

  µr f (X, Z,T ) = f (µr+1/2X, µ1/2Z, µT ).                       (14) 
 
Take d/dµ of (13) and (14), and investigate the results at µ = 1.  



Similarity models for unstratified fluid 
 
The group analysis shows that r controls the thermal surface condition. 
Only two values of r yield surface buoyancy or buoyancy flux 
distributions that are both steady and well behaved (non-singular) with 
respect to X.  Those values yield the following two similarity models. 
 
 
 I.  Unstratified fluid.  Step change in surface buoyancy. 
 
   Ψ = T 3/4F ξ,η( ), B = G ξ,η( ),                        (15) 
 

  ξ ≡ XT −5/4 , η ≡ ZT −1/2 .                         (16) 
 
II.  Unstratified fluid.  Step change in surface buoyancy flux. 
 
  Ψ = T F ξ,η( ), B = T1/2G ξ,η( ),                         (17) 
 

  ξ ≡ XT −3/2, η ≡ ZT −1/2 .                           (18) 



Similarity model for stably stratified fluid 
 
The group analysis for a stably stratified fluid (Γ > 0) yields specific 
values for all exponents. Fortuitously, these values are consistent with a 
surface thermal condition that is steady and well behaved with respect to 
X. These values yield the following similarity model. 
 
 
III.  Stratified fluid.  Step change in surface buoyancy flux. 
 
  Ψ = T F ξ,η( ), B = T1/2G ξ,η( ),                         (19) 
 

  ξ ≡ XT −3/2, η ≡ ZT −1/2 .                           (20) 
 
These scalings are identical to (17) and (18) that apply to a step change in 
the surface buoyancy flux in an unstratified fluid. 
 
 
 



Propagation of solutions 
 

The scalings constrain all local maxima in u, w, vorticity, convergence, 
and b gradient to propagate with constant values of ξ  and η . We can 
thus easily infer the speeds and trajectories of those features. 
 
Propagation of maxima in buoyancy forced flow I: 
 

   dX
dT

= 5
4
ξc T

1/4 ,  dZ
dT

= 1
2
ηc T

−1/2 ,  Z = const X2/5.              (21) 

 
Propagation of maxima in flux forced flows II and III: 
 

   dX
dT

= 3
2
ξc T

1/2,  dZ
dT

= 1
2
ηc T

−1/2 ,  Z = const X1/3,          (22) 

 
where ξc, ηc are constants defining a particular maximum. 
 



Amplitude of solutions 
 

As the local maxima propagate, their amplitudes change with time. The 
similarity scalings reveal these time dependencies.  
 
Amplitude of select maxima in buoyancy forced flow I: 
 

  u ~ bs
1/2ν1/4t1/4 , w ~ ν

t
, ∂b

∂x
~ bs

1/2

ν1/4
t−5/4 .             (23) 

 
Amplitude of select maxima in flux forced flows II and III: 
 

  u ~ bs
2/3ν1/6t1/2, w ~ ν

t
, ∂b

∂x
~ bs

2/3

ν1/3
t−1.            (24) 

 
Time dependencies may also be easily deduced for peak convergence, 
peak vorticity, peak ∂b/∂z  and many other derivative quantities. 
 



PDEs for the similarity variables 
 
Consider, for example, the stratified flow model III. Application of the 
similarity scalings Ψ = T F(ξ,η) and B = T1/2G(ξ,η) in (10) and (11) 
yields  
 

  1
2
− 3
2
ξ ∂
∂ξ

− 1
2
η ∂
∂η

+ ∂F
∂η

∂
∂ξ

− ∂F
∂ξ

∂
∂η

⎛
⎝⎜

⎞
⎠⎟
G = Γ ∂F

∂ξ
+ 1
Pr

∂2G
∂η2

,         (25) 

 

  − 3
2
ξ ∂
∂ξ

− 1
2
η ∂
∂η

+ ∂F
∂η

∂
∂ξ

− ∂F
∂ξ

∂
∂η

⎛
⎝⎜

⎞
⎠⎟
∂2F
∂η2

= − ∂G
∂ξ

+ ∂ 4F
∂η4

.       (26) 

 
Note that the dimension of the PDEs has been reduced from 3 (X, Z, T) to 
2 (ξ, η). 
 
 
 



Surface (η  = 0) boundary conditions 
 

No-slip:          ∂F
∂η
(ξ,0) = 0                    (27) 

 
Impermeability:      F(ξ,0) = 0 .                         (28) 
 

Vorticity constraint (7):  ∂ 3F
∂η3

ξ, 0( ) = − ∂
∂ξ

G ξ, η( )
0

∞
∫ dη .          (29)  

  

Step change in b:     G(ξ,0) =
−1, ξ < 0,
−ε, ξ > 0.

⎧
⎨
⎪

⎩⎪
            (30) 

   or 

Step change in b flux:   ∂G
∂η

ξ,0( ) = Pr2/3, ξ < 0,

ε Pr2/3, ξ > 0.

⎧
⎨
⎪

⎩⎪
        (31) 



Remote boundary conditions and initial conditions 
 
The vorticity and buoyancy are considered to vanish far above the surface 
(Z→∞). Since η→∞  as Z→∞, these remote conditions become  
 

  ∂2F
∂η2

, G→ 0 as η→∞.                       (32) 

 
The vorticity and buoyancy are also considered to be zero initially. Since 
η→∞  as T → 0, these initial conditions become  
 

  ∂2F
∂η2

, G→ 0 as η→∞,                       (33) 

 
which is identical to (30). This conflation of initial and boundary 
conditions is typical of similarity models. 
 
 



Validation tests 
 
We have just begun to explore the solutions from the similarity models. 
Tests have thus far been restricted to Pr = 1 and ε = 0.5. Each test consists 
of the following procedures. 
 
1. Numerical simulation. Generate a comparison (validation) data set by 
solving the Boussinesq equations of motion, thermal energy equation, and 
incompressibility condition numerically. No boundary layer or 
hydrostatic approximations are made. 
 
2. Similarity extension test. Take a numerically simulated flow field from 
step 1 at an input time t0  and extend it forward in time using the similarity 
scalings. Compare the extended and simulated fields at a second time t1. 
 
3. Similarity prediction test. Solve the similarity PDEs iteratively. 
Compare the similarity predicted fields with the corresponding 
numerically simulated fields.  



 
 



 
 
 



 



 
 



 
 



 
 



 
 



 
 


